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Abstract—Shared memory parallel programming models strive
to provide low-overhead execution environments. Task-based
programming models, in particular, are well-suited to cope with
the ubiquitous multi- and many-core systems since they allow
applications to express all available concurrency to a scheduler,
which is tasked with exploiting the available hardware resources.
It is general consensus that atomic operations should be preferred
over locks and mutexes to avoid inter-thread serialization and the
resulting loss in efficiency. However, even atomic operations may
serialize threads if not used judiciously. In this work, we will
discuss several optimizations applied to TTG and the underlying
PaRSEC runtime system aiming at removing contentious atomic
operations to reduce the overhead of task management to a
few hundred clock cycles. The result is an optimized data-flow
programming system that seamlessly scales from a single node to
distributed execution and which is able to compete with OpenMP
in shared memory.

Index Terms—Dataflow graph, Template Task Graph, PaR-
SEC, TTG, Task-Based Programming

I. INTRODUCTION

The number of cores per processor chip has been increasing

for the past decade, reaching 64 cores on AMD’s EPYC

architecture [1]. Parallel runtime systems have countered this

rise in shared memory concurrency by avoiding strong inter-

thread synchronization in the form of mutexes and locks and

instead focused on using atomic operations to safely update

shared state inside the runtime. However, at current and future

core counts, atomic operations, too, can become a bottleneck

that may serialize the execution of concurrent threads inside

the runtime system, negatively affecting the performance and

scalability of applications, esp. if short-running tasks are

involved. Selecting the right task-granularity is a trade-off

between available concurrency and task management overhead

and has been extensively studied [2], [3], [4], [5].

At the same time, many high-performance computing sys-

tems utilize specialized accelerators to achieve maximum per-

formance at higher energy-efficiencies as is typically possible

with general purpose CPUs. In such systems, the host CPU

is often tasked with managing the execution streams of these

accelerators, requiring low-latency responses to completions

of kernels on the devices in order to initiate data transfers

and new kernel launches. While on-device graph execution

mechanisms [6] aim at reducing the cost of launching kernels,

the irregular data movement of dynamic runtime systems often

conflict with the unresponsiveness of such batching mech-

anisms. Hence, the threads controlling the device execution

streams should be able to respond as fast as possible in order

to offset the overheads of the device kernel management [7].

For these reasons, it is important for runtime system im-

plementations to minimize synchronization between threads

and provide efficient parallel execution at full node scale. Any

time spent inside the runtime system is CPU time wasted for

the application. Internal thread synchronization is an important

culprit of wasted CPU cycles.

Figure 1 shows the thread-scaling behavior of atomic in-

crements on both contended and uncontended (thread-private

in our benchmark) atomic variables on two different archi-

tectures: AMD EPYC Rome and IBM Power9. The detailed

system specifications are provided in Section V-A. What

is immediately visible is the difference between contended

and uncontended accesses. As expected, the latency for an

uncontended atomic operation is independent of the number

of threads performing atomic operations. This can be attributed

to the fact that modern CPUs typically do not lock the whole

memory bus but are able to lock individual cache lines [8].

Consequently, atomic variables that are rarely accessed by

multiple threads do not typically pose a performance problem,

except for the fact that atomic operations are typically slower

than non-atomic operations (we measured approximately 5 ns

on AMD and 20–38 ns per operation on Power9). Moreover,

on Power9 a difference can be observed between sequentially

consistent and relaxed memory ordering.

If, however, threads access a single shared atomic variable,

these accesses are effectively serialized, increasing the average

time per operation with 64 threads on AMD to around 530 ns

and 1200 ns with 22 threads on Power9. In the quest for





Three features of PaRSEC heavily used in TTG turned out

to be critical for the performance of short-running tasks: the

termination detection, the scalable hash table used to track

discovered tasks, and the management of eligible tasks inside

the scheduler. We carefully analyzed the usage of atomic

operations throughout all the code paths used by TTG and

removed any heavily contended atomic variables. While some

features are shared between different PaRSEC frontends, TTG

is the only frontend that utilizes all components discussed

below.

A. Termination Detection

The termination of a TTG data-flow application is dependent

on the execution of all tasks at all processes. Even when

running on a single process, the difference NP (pending

tasks) between the number of discovered task ND and the

number of executed tasks NE must become equal for the

application to complete, i.e., NP = ND−NE = 0, ND ≥ NE .

TTG over the PaRSEC backend makes use of the 4 counters

wave algorithm implemented in PaRSEC [16]. In essence,

this algorithm locally keeps track of the number of pending

tasks and internal actions (NA) as well as the number of

messages sent and received. When termination is possible

(i.e., NP + NA = 0 so any new work might only come

from a new message), the process contributes to a reduction

operation that accumulates at a root process the total number

of messages sent and received. When these two counters are

equal and remain unchanged for two consecutive reductions,

global termination is announced.

The communication of local termination typically occurs

infrequently, i.e., every time the process has completed all

locally known tasks and pending messages. In data-flow based

applications, this is not a significant source of overhead, as

shown in [16]. However, the local accounting of pending tasks

and pending actions has so far been implemented using atomic

variables shared among all threads in a process, creating

significant contention.

B. Scheduler Task Management

At the heart of every task-based runtime system is a

scheduler mapping eligible tasks to a set of worker threads for

execution. The scheduler is typically a passive element, i.e.,

no explicit scheduling thread is used to dispatch tasks. Instead,

threads continuously query a data structure for eligible tasks.

The requirements for TTG are twofold. First, the sched-

uler must provide low-overhead, low-contention task distribu-

tion among threads (e.g., through stealing from thread-local

queues) because the discovery of tasks is not balanced across

threads. Second, the scheduler must support priorities in order

to fully support the semantics of TTG, allowing applications

to steer the execution along a critical path.

PaRSEC provides a set of scheduler implementations with

different characteristics, all of which compromise on either one

of the two requirements. An example of a queue that provides

low-contention but is missing support for priorities is the local-

lifo (LL) scheduler where each thread owns a LIFO into which

tasks are pushed and from which other threads may steal tasks

in case of starvation. The fundamental characteristics of a

LIFO, however, do not allow for sorting based on priorities,

since tasks are pushed to and extracted from its beginning.

The default scheduler in PaRSEC is local-flat-queues (LFQ),

which defines a hierarchical structure to steal tasks between

threads: each thread owns a bounded buffer of tasks and a

global FIFO shared between all threads serves as overflow

queue. If possible, tasks are pushed into free slots of the

thread’s bounded buffer. Otherwise, the tasks are pushed into

the global FIFO. Tasks with the highest priority are kept to fill

up the bounded buffer, and tasks with the lowest priority are

enqueued into the LIFO, if necessary. When a thread selects a

task for execution, it takes the task with highest priority in its

local bounded buffer. If that buffer is empty, it tries to steal

one task from the bounded buffer of any thread in the same

domain of the cache and NUMA hierarchy. If no task can be

found in any of the threads’ bounded buffer, the first task in

the system level FIFO queue is selected. The global FIFO may

quickly become a bottleneck due to the global lock used to

ensure consistency.

Priorities impact the order of selection in the bounded

buffers and delay tasks with lower priority, which have a

higher chance of landing in the global FIFO. However, they

are not followed strictly, i.e., a task with lower priority might

be executed before another task with higher priority that was

discovered simultaneously.

C. Scalable Hash Table

At the heart of the task management in TTG is a scalable,

thread-safe hash table. Each template task maintains such a

hash table to store newly discovered tasks whose inputs are

not fully satisfied immediately. Tasks are removed from it once

the task becomes eligible for execution. When data is sent to

successors, a lookup is performed for the task ID to check

whether a task with this ID has been discovered already, and

if so its inputs are updated.

Since inputs can be sent from within any task and thus by

any thread at any time, the hash table has to ensure thread-safe

insertion, removal, and lookup at a minimum cost. Moreover,

the number of discovered tasks not yet eligible for execution

is unbounded and in large applications may exceed several

thousand entries (large scale runs easily reach millions of tasks

per process). At the same time, allocating a large hash table

upfront is not desirable due to the unnecessarily large memory

footprint of the hash table in applications with small numbers

of tasks. Even in large scale applications, the distribution of

tasks between TTs is highly irregular. As a consequence, the

hash table needs to dynamically adapt during the execution.

1) Scalabilty: Thus, the hash table implementation in PaR-

SEC supports efficient growth by chaining of tables. If the fill

of one bucket in the main table exceeds a threshold (e.g., 16) a

new main table with twice the number of buckets is allocated.

All new entries will be inserted into the new table but old

entries are not immediately moved into the new table, as

depicted in Figure 3. Finding (and removing) entries involves



Fig. 3: Hash table in PaRSEC: threads performing lookups,

insertions, and removal take a reader lock and lock individual

buckets. For lookup and removal, threads traverse buckets in

old tables until the element is found or the end of the table

list is reached. Keys are remapped using the size s of a table.

traversing from the main table through the old tables until

either the element is found or the end of the table chain is

reached. A found element is moved into the main table to

speedup the next search. As tasks only remain for a bounded

time in the hash table, tasks that live in the old (smaller) tables

are eventually removed, and small tables become empty. Once

an old table is empty, it is removed from the list of tables,

eventually leaving the main table as the only table in the list.

With this scheme, the hash table implementation in PaR-

SEC can hold anywhere between a handful and millions of

elements, providing the basis for scalable task discovery.

2) Thread-safety: This dynamic table management requires

a careful locking regime. Threads may decide to allocate a

new main table while other threads access the hash table. The

simplest solution of employing a central lock would severely

limit thread-scalability. Instead, the API allows threads to lock

individual buckets (identified by the key, not the index of the

bucket) using a simple atomic lock (e.g., using atomic_flag

in C11). While holding the lock, threads can safely find, insert,

and remove an element for the key used to lock the bucket.

With a reasonably balanced hash function and sufficient space

in the hash table, this allows for thread-parallel access without

synchronization. A typical pattern in TTG is to lock the bucket

for a task ID, perform a lookup, insert an element if not found

or remove an element if all inputs have been satisfied, and then

unlock the bucket again.

However, a thread inserting an element may decide to create

a new main table because the high water mark of a bucket was

reached. The thread then has to wait for all other threads to

release their bucket locks because they naturally do not own

the lock on the bucket in the new table that would hold the

key for which they have a lock. Otherwise, duplicated entries

could occur, breaking the lookup of discovered tasks in TTG.

PaRSEC prevents such inconsistencies using a reader-writer

lock, with threads locking a bucket taking a table-wide reader

lock and threads wishing to resize the hash table taking

a writer lock. While resizing is a rare event, taking and

releasing the reader lock still incurs atomic operations, creating

a synchronization point.

IV. IMPROVEMENTS

A. Atomic Memory Ordering

C11 has introduced a memory model that provides fine-

grain control over the synchronization of memory accesses.

By default, atomic memory operations provide sequential

consistent ordering, preventing both the hardware and the

compiler from reordering instructions around atomic mem-

ory operations. However, for atomic locks, the more relaxed

acquire-release semantics are sufficient and provide both the

compiler and CPU with leverage for some optimizations. For

example, taking a lock on x86 using acquire memory ordering

still involves the hardware infrastructure for atomic operations.

However, releasing a lock with the release memory ordering

is implemented using regular store, thanks to the total store

ordering (TSO) of the x86 architecture [17]. The use of proper

memory ordering for atomic locks thus removes one of two

atomic operations from a lock-unlock cycle.

In addition, we use the relaxed memory ordering for all

other atomic operations. In TTG, most atomic operations do

not require acquire-release semantics and for the ones that

do (e.g., atomic compare-and-swap for LIFO implementa-

tions) we use acquire and release memory barriers (using

atomic_thread_fence).

B. Thread-Local Termination Detection

Instead of counting tasks on a per-process basis using

atomic increment and decrement operations, we introduce a

third layer and count executed and discovered tasks at the

thread-level. Each thread maintains a counter that is incre-

mented for each task discovered and decremented for each task

executed by that thread. These updates occur non-atomically.

If a thread falls idle, it pushes its locally accumulated values

to the process-wide counter using atomic updates, initiating

the contribution to the global reduction if no other threads

have pending local updates. Unless starvation and recovery

occur regularly, the updates of process-wide counters should

remain rare events. By introducing a third level of termination

detection (thread-level, process-level, global) we managed to

eliminate a choke point in TTG.

C. Local Task Queues with Priorities

In order to eliminate the serialization of the LFQ scheduler

once the global FIFO is accessed, we designed a new scheduler

that avoids single points of contention while preserving the

ability to support priorities.

The LL scheduler fulfills the first requirement but does not

support priorities. We thus implemented a variation of LL,

called Local LIFO with Priorities (LLP). Similar to LL, every

thread owns a LIFO into which it pushes tasks and from

which other threads may steal tasks. However, we make two

observations: i) only the owning thread may push tasks into

its queue; and ii) a LIFO is a single-linked list whose head

pointer is atomically changed during insertion and removal.

In order to support priorities, the owning thread pushes

directly into the LIFO if the new task’s priority is higher than

the priority of the existing first element. In that case, the cost



of insertion is a single compare-and-swap (CAS) operation on

the head pointer. If the priority is lower than the head element

the thread detaches the head pointer, essentially marking the

LIFO as empty, inserts the new task into the single-linked

list, and reattaches the new list. Detaching the head pointer

requires a CAS operation. Reattaching the LIFO can be done

using a single store with release semantics.

In the worst case, the insertion of tasks into the single-

linked list requires O(N) steps, with N the length of the list.

We mitigate this by bundling new tasks into sorted lists that

are then inserted in one pass. Moreover, new tasks will be

inserted before old tasks that have the same priority, implicitly

prioritizing tasks that may consume data already in the cache

and potentially reducing the number of elements to traverse.

D. Reader-Biased Reader-Writer Locks

As described in Section III-C, the scalable hash table im-

plementation provided by PaRSEC is an essential component

for the data flow task management in TTG and provides a

fine-grained locking mechanism for individual buckets. How-

ever, even with the acquire-release semantics introduced in

Section IV-A, two atomic operations are required to lock a

bucket: one for taking the bucket lock and one for the reader

lock. For unlocking the bucket, on the other hand, one atomic

operation is required, namely to release the reader lock. The

reader-writer lock is thus a heavily contended variable.

However, for a given run of a given application, each TT

holds a finite number of active tasks that need to reside

simultaneously in its hash table. This means that for each

hash table, there is a maximum number of resize operations

during the execution. In practice, rarely more than 10 resize

operations are observed, since each resize doubles the size of

the hash table. Thus, the use of the reader-writer lock in the

hash table is heavily biased towards readers.

This is a common occurrence in low-level system program-

ming and a range of prior art exists on reader-biased locks [18],

[19], [20]. We chose the BRAVO lock wrapper [19], which can

sit on top of any custom reader-writer lock implementation and

prevents the use of the underlying lock for the most common

cases. The basis of the BRAVO lock wrapper is a table of flags

which are set by threads taking the reader lock, and a global

flag set by a thread taking the writer lock. As long as no writer

lock is being taken, all that is required to take a reader lock is

to set and unset the flag in the table, as depicted in Figure 4.

Using proper memory ordering, a reader (Figure 4a) taking a

lock checks the writer flag and—if not set—proceeds to set its

flag in the table, before rechecking the writer flag to ensure

no writer has arrived. If at any point while the reader lock is

taken a writer is detected through the writer flag, the reader

has to fall back to the underlying reader-writer lock. A writer

(Figure 4b) takes the underlying lock and waits for all readers

to release their flag in the table before proceeding.

Overall, no atomic operations are required for taking the

reader lock in the fast path. In TTG, the number of threads in

each process is static and known during initialization. Thus,

we can allocate a table that is large enough to hold an entry for

(a) Taking the reader lock. (b) Taking the writer lock.

Fig. 4: Steps for taking reader and writer locks using the

BRAVO lock wrapper.

each thread and avoid sharing of cache lines, i.e., allocating

at least one cache-line per thread in the table. Moreover,

while the original paper proposes a single table per lock and

hashing the thread and lock IDs to find a slot in the table, we

implemented one table per lock to eliminate the chance for

collisions and prevent any cache line sharing between threads.

While taking a writer lock in this scheme is rather expensive,

its rare occurrence ensures a minuscule impact on the overall

application performance.

Overall, the use of the biased reader-writer lock removed

two of the three atomic memory operations needed to lock

a bucket. The only atomic operation left is that to take the

bucket lock. Provided that there are at least 28 buckets and at

most 16 collisions per bucket, these locks are unlikely to be

contended.

E. Modeling the Use of Atomic Operations

We can model the number of atomic operations as follows.

An instance of a task is represented through a task object. To

manage these objects, TTG employs a free-list that contains

a per-thread memory pool. Allocated elements are returned to

the thread’s memory pool from which they were allocated, to

avoid imbalances between allocating and deallocating threads.

Thus, the creation and destruction of a task involves two

atomic operations (NCD = 2).

For each of the NI inputs of a task that have to be satisfied,

one atomic operation has to be performed to increment the

counter of available input data (NID = 1). If that data is

reused (i.e., if no new copy is created), two additional atomic

operation (NIC = 2) are required on the reference count of the

copy used to manage its lifetime, one while retaining the copy

and one while releasing it (certain optimizations are applied

if the current task is the final owner and the copy is either

released or ownership is moved to a single successor). If, on

the other hand, a new copy is created, i.e., because the data

has to be assumed to be mutated by two different tasks, then

memory is allocated, which we assume also involves at least

one atomic operation in the underlying system allocator.

Moreover, the hash table bucket has to be locked and

unlocked for each input, resulting in one atomic operation on

the atomic lock of the bucket (NIB = 1). For single-input

tasks, access to the hash table can be eliminated because the

a newly discovered task can be scheduled immediately.
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