Pushing the Boundaries of Small Tasks: Scalable
Low-Overhead Data-Flow Programming in TTG

Joseph Schuchart*, Poornima Nookala, Thomas Herault*, Edward F. Valeev*, George Bosilca*
* Innovative Computing Laboratory

The University of Tennessee
Knoxville, TN USA

Email: schuchart@icl.utk.edu

T Institute for Advanced Computational Science

Stony Brook University
Stony Brook, NY, USA

! Department of Chemistry

Virginia Polytechnic Institute and State University

Blacksburg, VA, USA

Abstract—Shared memory parallel programming models strive
to provide low-overhead execution environments. Task-based
programming models, in particular, are well-suited to cope with
the ubiquitous multi- and many-core systems since they allow
applications to express all available concurrency to a scheduler,
which is tasked with exploiting the available hardware resources.
It is general consensus that atomic operations should be preferred
over locks and mutexes to avoid inter-thread serialization and the
resulting loss in efficiency. However, even atomic operations may
serialize threads if not used judiciously. In this work, we will
discuss several optimizations applied to TTG and the underlying
PaRSEC runtime system aiming at removing contentious atomic
operations to reduce the overhead of task management to a
few hundred clock cycles. The result is an optimized data-flow
programming system that seamlessly scales from a single node to
distributed execution and which is able to compete with OpenMP
in shared memory.

Index Terms—Dataflow graph, Template Task Graph, PaR-
SEC, TTG, Task-Based Programming

I. INTRODUCTION

The number of cores per processor chip has been increasing
for the past decade, reaching 64 cores on AMD’s EPYC
architecture [1]. Parallel runtime systems have countered this
rise in shared memory concurrency by avoiding strong inter-
thread synchronization in the form of mutexes and locks and
instead focused on using atomic operations to safely update
shared state inside the runtime. However, at current and future
core counts, atomic operations, too, can become a bottleneck
that may serialize the execution of concurrent threads inside
the runtime system, negatively affecting the performance and
scalability of applications, esp. if short-running tasks are
involved. Selecting the right task-granularity is a trade-off
between available concurrency and task management overhead
and has been extensively studied [2], [3], [4], [5].

At the same time, many high-performance computing sys-
tems utilize specialized accelerators to achieve maximum per-
formance at higher energy-efficiencies as is typically possible
with general purpose CPUs. In such systems, the host CPU
is often tasked with managing the execution streams of these

accelerators, requiring low-latency responses to completions
of kernels on the devices in order to initiate data transfers
and new kernel launches. While on-device graph execution
mechanisms [6] aim at reducing the cost of launching kernels,
the irregular data movement of dynamic runtime systems often
conflict with the unresponsiveness of such batching mech-
anisms. Hence, the threads controlling the device execution
streams should be able to respond as fast as possible in order
to offset the overheads of the device kernel management [7].

For these reasons, it is important for runtime system im-
plementations to minimize synchronization between threads
and provide efficient parallel execution at full node scale. Any
time spent inside the runtime system is CPU time wasted for
the application. Internal thread synchronization is an important
culprit of wasted CPU cycles.

Figure 1 shows the thread-scaling behavior of atomic in-
crements on both contended and uncontended (thread-private
in our benchmark) atomic variables on two different archi-
tectures: AMD EPYC Rome and IBM Power9. The detailed
system specifications are provided in Section V-A. What
is immediately visible is the difference between contended
and uncontended accesses. As expected, the latency for an
uncontended atomic operation is independent of the number
of threads performing atomic operations. This can be attributed
to the fact that modern CPUs typically do not lock the whole
memory bus but are able to lock individual cache lines [8].
Consequently, atomic variables that are rarely accessed by
multiple threads do not typically pose a performance problem,
except for the fact that atomic operations are typically slower
than non-atomic operations (we measured approximately 5 ns
on AMD and 20-38ns per operation on Power9). Moreover,
on Power9 a difference can be observed between sequentially
consistent and relaxed memory ordering.

If, however, threads access a single shared atomic variable,
these accesses are effectively serialized, increasing the average
time per operation with 64 threads on AMD to around 530ns
and 1200ns with 22 threads on Power9. In the quest for

P
10° 4 P i
a”
. o= = =5
2 A S R SV Y1l oicind e
‘s v P -
£ v o
'5 102 ¢ _e” — AMD Epyc Rome
2 T — AMD Epyc Rome (thread-local)
Ao — —1 ~&- IBM Powers

s ‘..i, bt nd nd -@ IBM Powerd (local)
E oop-—o-———0——1-0 ~&- IBM Powerd (relaxed, thread local)
@ +
-3 4
i ==
4 7
a

10° T T T T T T T

o 10 20 30 40 50 60

Number of Threads

Fig. 1: Per-Operation latency of atomic increment on con-
tended and uncontended variables.

achieving low-overhead parallel runtime systems, this is a
strong incentive for avoiding atomic operations on shared
variables wherever possible [9].

In this paper, we present the results of a systematic analysis
of the Template Task Graph data-flow abstraction (TTG [10])
running on top of the PaRSEC runtime system [11] and discuss
the bottlenecks found as well as their resolution. We will
demonstrate that TTG is capable of executing tasks a short
as 10k cycles with less than 2% overhead and 40k cycles
with less than 1% overhead while fully utilizing all 64 cores
on an AMD EPYC Rome CPU, a 10x improvement over the
current implementation of 77G with the PaRSEC backend. We
will also show that T7G is capable of competing with (and
at times outperforming) OpenMP worksharing constructs in a
parameterized task benchmark. While T7G seamlessly scales
from shared memory to hundreds of nodes, we will focus on
management of tasks in shared memory in this work.

The rest of the paper is structured as follows: Section II
provides a short introduction to the 77G programming model
and the underlying PaRSEC runtime system. An analysis of
factors limiting scalability in is provided in Section III. Our
solutions will be discussed in Section IV and an evaluated
in Section V. Related work is discussed in Section VI and
conclusions are drawn in Section VIL

II. BACKGROUND

The Template Task Graph (77G) data-flow based program-
ming model has been introduced recently and aims at provid-
ing an abstraction for irregular applications [10]. In contrast
to traditional task discovery models like OpenMP where the
task graph is discovered up front, 77G applications build
an abstract representation of template tasks (I'T) connected
through edges to form a template task graph, which may
include cycles. During execution, an acyclic task graph unfolds
through dynamic traversal of the template task graph. Data
flows between tasks along edges and is sent dynamically
during the execution of a task. This provides applications with
great flexibility, e.g., to dynamically steer the unfolding of the
template task graph based on input data.

In TTG, each task has a set of input data and is scheduled
for execution once all inputs are satisfied. At any point during
its execution, a task may send data into its output terminals,

causing it to flow to instances of any connected successor
template tasks (e.g., the P2P output terminal in Figure 2a is
connected to the P2P input terminal; details will be provided
in Section V-D1). Tasks are uniquely identified through rask
IDs (or keys), which can be any user-provided data type, e.g.,
an integer or a tuple uniquely describing the task.

TTG is implemented using modern C++ and can be imple-
mented over multiple backends. Currently, 77G provides an
implementation on top of PaRSEC and one on top of MAD-
NESS [12]. In this work we will focus on the PaRSEC back-
end, which has become the main development backend and
provides performance-relevant features, including data copy
tracking and zero-copy data transfers between processes [13].

The PaRSEC backend in TTG utilizes the communication
infrastructure of PaRSEC for distributed memory execution,
including an active messaging layer and one-sided commu-
nication abstrations. Its main use, however, are PaRSEC’s
task scheduling capabilities. Once a task becomes eligible for
execution, it is dispatched to PaRSEC for execution, which
owns the execution resources (thread pool) and provides a
flexible scheduling infrastructure.

TTG also relies on PaRSEC’s termination detection mech-
anism, used to track outstanding tasks and in-flight messages
and signaling completion once all work has completed (see
Section III-A). This feature is essential in enabling the seam-
less transition from shared-memory to distributed-memory
execution in 77G.

In the past, we have observed significant limitations in the
scalability of TTG applications employing short tasks. One
such example is the multi-resolution analysis (MRA) [14],
which computes the multi-wavelet representation of 3D Gaus-
sian functions. As we will show in Section V-E, the scaling
of the MRA implementation under current 77G is limited to
a speedup of 5x at 64 threads. We will demonstrate that the
systematic analysis and elimination of bottlenecks in PaRSEC
will lead to significant scalability improvements for MRA.

III. PERFORMANCE BOTTLENECKS

Using the Linux perf tool [15], we have carefully ana-
lyzed the hot spots in the execution of small tasks in 77G.

Init
I2P | 124

P2P | Aggregator

Point
P2P | P2a [P2wW

(a) Template Task Gaph.

(b) Unrolled sample task graph.

Fig. 2: Task-bench benchmark in TTG(Section V-D): the Init
task feeds data into the graph, dispatching Poinr tasks that
compute a point in the graph and send data to new Point
instances for a given number of timesteps. Eventually, data
is returned to the input data structure by the Write-Back task.

Three features of PaRSEC heavily used in 77G turned out
to be critical for the performance of short-running tasks: the
termination detection, the scalable hash table used to track
discovered tasks, and the management of eligible tasks inside
the scheduler. We carefully analyzed the usage of atomic
operations throughout all the code paths used by 77G and
removed any heavily contended atomic variables. While some
features are shared between different PaRSEC frontends, TTG
is the only frontend that utilizes all components discussed
below.

A. Termination Detection

The termination of a TTG data-flow application is dependent
on the execution of all tasks at all processes. Even when
running on a single process, the difference Np (pending
tasks) between the number of discovered task Np and the
number of executed tasks Np must become equal for the
application to complete, i.e., Np = Np—Ng =0, Np > Ng.
TTG over the PaRSEC backend makes use of the 4 counters
wave algorithm implemented in PaRSEC [16]. In essence,
this algorithm locally keeps track of the number of pending
tasks and internal actions (N4) as well as the number of
messages sent and received. When termination is possible
(i.e., Np + Ny = 0 so any new work might only come
from a new message), the process contributes to a reduction
operation that accumulates at a root process the total number
of messages sent and received. When these two counters are
equal and remain unchanged for two consecutive reductions,
global termination is announced.

The communication of local termination typically occurs
infrequently, i.e., every time the process has completed all
locally known tasks and pending messages. In data-flow based
applications, this is not a significant source of overhead, as
shown in [16]. However, the local accounting of pending tasks
and pending actions has so far been implemented using atomic
variables shared among all threads in a process, creating
significant contention.

B. Scheduler Task Management

At the heart of every task-based runtime system is a
scheduler mapping eligible tasks to a set of worker threads for
execution. The scheduler is typically a passive element, i.e.,
no explicit scheduling thread is used to dispatch tasks. Instead,
threads continuously query a data structure for eligible tasks.

The requirements for 77G are twofold. First, the sched-
uler must provide low-overhead, low-contention task distribu-
tion among threads (e.g., through stealing from thread-local
queues) because the discovery of tasks is not balanced across
threads. Second, the scheduler must support priorities in order
to fully support the semantics of TTG, allowing applications
to steer the execution along a critical path.

PaRSEC provides a set of scheduler implementations with
different characteristics, all of which compromise on either one
of the two requirements. An example of a queue that provides
low-contention but is missing support for priorities is the local-
lifo (LL) scheduler where each thread owns a LIFO into which

tasks are pushed and from which other threads may steal tasks
in case of starvation. The fundamental characteristics of a
LIFO, however, do not allow for sorting based on priorities,
since tasks are pushed to and extracted from its beginning.

The default scheduler in PaRSEC is local-flat-queues (LFQ),
which defines a hierarchical structure to steal tasks between
threads: each thread owns a bounded buffer of tasks and a
global FIFO shared between all threads serves as overflow
queue. If possible, tasks are pushed into free slots of the
thread’s bounded buffer. Otherwise, the tasks are pushed into
the global FIFO. Tasks with the highest priority are kept to fill
up the bounded buffer, and tasks with the lowest priority are
enqueued into the LIFO, if necessary. When a thread selects a
task for execution, it takes the task with highest priority in its
local bounded buffer. If that buffer is empty, it tries to steal
one task from the bounded buffer of any thread in the same
domain of the cache and NUMA hierarchy. If no task can be
found in any of the threads’ bounded buffer, the first task in
the system level FIFO queue is selected. The global FIFO may
quickly become a bottleneck due to the global lock used to
ensure consistency.

Priorities impact the order of selection in the bounded
buffers and delay tasks with lower priority, which have a
higher chance of landing in the global FIFO. However, they
are not followed strictly, i.e., a task with lower priority might
be executed before another task with higher priority that was
discovered simultaneously.

C. Scalable Hash Table

At the heart of the task management in 77G is a scalable,
thread-safe hash table. Each template task maintains such a
hash table to store newly discovered tasks whose inputs are
not fully satisfied immediately. Tasks are removed from it once
the task becomes eligible for execution. When data is sent to
successors, a lookup is performed for the task ID to check
whether a task with this ID has been discovered already, and
if so its inputs are updated.

Since inputs can be sent from within any task and thus by
any thread at any time, the hash table has to ensure thread-safe
insertion, removal, and lookup at a minimum cost. Moreover,
the number of discovered tasks not yet eligible for execution
is unbounded and in large applications may exceed several
thousand entries (large scale runs easily reach millions of tasks
per process). At the same time, allocating a large hash table
upfront is not desirable due to the unnecessarily large memory
footprint of the hash table in applications with small numbers
of tasks. Even in large scale applications, the distribution of
tasks between TTs is highly irregular. As a consequence, the
hash table needs to dynamically adapt during the execution.

1) Scalabilty: Thus, the hash table implementation in PaR-
SEC supports efficient growth by chaining of tables. If the fill
of one bucket in the main table exceeds a threshold (e.g., 16) a
new main table with twice the number of buckets is allocated.
All new entries will be inserted into the new table but old
entries are not immediately moved into the new table, as
depicted in Figure 3. Finding (and removing) entries involves

main old table old table
table

] hash(k,s) —»] |
iEi.IOCKE;;:‘.

Thread
performing
lookup

[—) hash(k, s')
> >0

Fig. 3: Hash table in PaRSEC: threads performing lookups,
insertions, and removal take a reader lock and lock individual
buckets. For lookup and removal, threads traverse buckets in
old tables until the element is found or the end of the table
list is reached. Keys are remapped using the size s of a table.

traversing from the main table through the old tables until
either the element is found or the end of the table chain is
reached. A found element is moved into the main table to
speedup the next search. As tasks only remain for a bounded
time in the hash table, tasks that live in the old (smaller) tables
are eventually removed, and small tables become empty. Once
an old table is empty, it is removed from the list of tables,
eventually leaving the main table as the only table in the list.

With this scheme, the hash table implementation in PaR-
SEC can hold anywhere between a handful and millions of
elements, providing the basis for scalable task discovery.

2) Thread-safety: This dynamic table management requires
a careful locking regime. Threads may decide to allocate a
new main table while other threads access the hash table. The
simplest solution of employing a central lock would severely
limit thread-scalability. Instead, the API allows threads to lock
individual buckets (identified by the key, not the index of the
bucket) using a simple atomic lock (e.g., using atomic_flag
in C11). While holding the lock, threads can safely find, insert,
and remove an element for the key used to lock the bucket.
With a reasonably balanced hash function and sufficient space
in the hash table, this allows for thread-parallel access without
synchronization. A typical pattern in 77G is to lock the bucket
for a task ID, perform a lookup, insert an element if not found
or remove an element if all inputs have been satisfied, and then
unlock the bucket again.

However, a thread inserting an element may decide to create
a new main table because the high water mark of a bucket was
reached. The thread then has to wait for all other threads to
release their bucket locks because they naturally do not own
the lock on the bucket in the new table that would hold the
key for which they have a lock. Otherwise, duplicated entries
could occur, breaking the lookup of discovered tasks in 77G.

PaRSEC prevents such inconsistencies using a reader-writer
lock, with threads locking a bucket taking a table-wide reader
lock and threads wishing to resize the hash table taking
a writer lock. While resizing is a rare event, taking and
releasing the reader lock still incurs atomic operations, creating
a synchronization point.

IV. IMPROVEMENTS
A. Atomic Memory Ordering

C11 has introduced a memory model that provides fine-
grain control over the synchronization of memory accesses.
By default, atomic memory operations provide sequential
consistent ordering, preventing both the hardware and the
compiler from reordering instructions around atomic mem-
ory operations. However, for atomic locks, the more relaxed
acquire-release semantics are sufficient and provide both the
compiler and CPU with leverage for some optimizations. For
example, taking a lock on x86 using acquire memory ordering
still involves the hardware infrastructure for atomic operations.
However, releasing a lock with the release memory ordering
is implemented using regular store, thanks to the total store
ordering (TSO) of the x86 architecture [17]. The use of proper
memory ordering for atomic locks thus removes one of two
atomic operations from a lock-unlock cycle.

In addition, we use the relaxed memory ordering for all
other atomic operations. In 77G, most atomic operations do
not require acquire-release semantics and for the ones that
do (e.g., atomic compare-and-swap for LIFO implementa-
tions) we use acquire and release memory barriers (using
atomic_thread_fence).

B. Thread-Local Termination Detection

Instead of counting tasks on a per-process basis using
atomic increment and decrement operations, we introduce a
third layer and count executed and discovered tasks at the
thread-level. Each thread maintains a counter that is incre-
mented for each task discovered and decremented for each task
executed by that thread. These updates occur non-atomically.

If a thread falls idle, it pushes its locally accumulated values
to the process-wide counter using atomic updates, initiating
the contribution to the global reduction if no other threads
have pending local updates. Unless starvation and recovery
occur regularly, the updates of process-wide counters should
remain rare events. By introducing a third level of termination
detection (thread-level, process-level, global) we managed to
eliminate a choke point in 77G.

C. Local Task Queues with Priorities

In order to eliminate the serialization of the LFQ scheduler
once the global FIFO is accessed, we designed a new scheduler
that avoids single points of contention while preserving the
ability to support priorities.

The LL scheduler fulfills the first requirement but does not
support priorities. We thus implemented a variation of LL,
called Local LIFO with Priorities (LLP). Similar to LL, every
thread owns a LIFO into which it pushes tasks and from
which other threads may steal tasks. However, we make two
observations: i) only the owning thread may push tasks into
its queue; and ii) a LIFO is a single-linked list whose head
pointer is atomically changed during insertion and removal.

In order to support priorities, the owning thread pushes
directly into the LIFO if the new task’s priority is higher than
the priority of the existing first element. In that case, the cost

of insertion is a single compare-and-swap (CAS) operation on
the head pointer. If the priority is lower than the head element
the thread detaches the head pointer, essentially marking the
LIFO as empty, inserts the new task into the single-linked
list, and reattaches the new list. Detaching the head pointer
requires a CAS operation. Reattaching the LIFO can be done
using a single store with release semantics.

In the worst case, the insertion of tasks into the single-
linked list requires O(N) steps, with N the length of the list.
We mitigate this by bundling new tasks into sorted lists that
are then inserted in one pass. Moreover, new tasks will be
inserted before old tasks that have the same priority, implicitly
prioritizing tasks that may consume data already in the cache
and potentially reducing the number of elements to traverse.

D. Reader-Biased Reader-Writer Locks

As described in Section III-C, the scalable hash table im-
plementation provided by PaRSEC is an essential component
for the data flow task management in 77G and provides a
fine-grained locking mechanism for individual buckets. How-
ever, even with the acquire-release semantics introduced in
Section IV-A, two atomic operations are required to lock a
bucket: one for taking the bucket lock and one for the reader
lock. For unlocking the bucket, on the other hand, one atomic
operation is required, namely to release the reader lock. The
reader-writer lock is thus a heavily contended variable.

However, for a given run of a given application, each TT
holds a finite number of active tasks that need to reside
simultaneously in its hash table. This means that for each
hash table, there is a maximum number of resize operations
during the execution. In practice, rarely more than 10 resize
operations are observed, since each resize doubles the size of
the hash table. Thus, the use of the reader-writer lock in the
hash table is heavily biased towards readers.

This is a common occurrence in low-level system program-
ming and a range of prior art exists on reader-biased locks [18],
[19], [20]. We chose the BRAVO lock wrapper [19], which can
sit on top of any custom reader-writer lock implementation and
prevents the use of the underlying lock for the most common
cases. The basis of the BRAVO lock wrapper is a table of flags
which are set by threads taking the reader lock, and a global
flag set by a thread taking the writer lock. As long as no writer
lock is being taken, all that is required to take a reader lock is
to set and unset the flag in the table, as depicted in Figure 4.
Using proper memory ordering, a reader (Figure 4a) taking a
lock checks the writer flag and—if not set—proceeds to set its
flag in the table, before rechecking the writer flag to ensure
no writer has arrived. If at any point while the reader lock is
taken a writer is detected through the writer flag, the reader
has to fall back to the underlying reader-writer lock. A writer
(Figure 4b) takes the underlying lock and waits for all readers
to release their flag in the table before proceeding.

Overall, no atomic operations are required for taking the
reader lock in the fast path. In 77G, the number of threads in
each process is static and known during initialization. Thus,
we can allocate a table that is large enough to hold an entry for

Writer
Lock

Fall-back if &
Writer Flag
isset i

Setto 1

Re-check
Flag

o|lo|o|o|o|o|o|ofe]|e
o|lo|o|o|o|r|o|o]|o]|o

Check
Flag

(a) Taking the reader lock. (b) Taking the writer lock.

Fig. 4: Steps for taking reader and writer locks using the
BRAVO lock wrapper.

each thread and avoid sharing of cache lines, i.e., allocating
at least one cache-line per thread in the table. Moreover,
while the original paper proposes a single table per lock and
hashing the thread and lock IDs to find a slot in the table, we
implemented one table per lock to eliminate the chance for
collisions and prevent any cache line sharing between threads.
While taking a writer lock in this scheme is rather expensive,
its rare occurrence ensures a minuscule impact on the overall
application performance.

Overall, the use of the biased reader-writer lock removed
two of the three atomic memory operations needed to lock
a bucket. The only atomic operation left is that to take the
bucket lock. Provided that there are at least 2% buckets and at
most 16 collisions per bucket, these locks are unlikely to be
contended.

E. Modeling the Use of Atomic Operations

We can model the number of atomic operations as follows.
An instance of a task is represented through a task object. To
manage these objects, TTG employs a free-list that contains
a per-thread memory pool. Allocated elements are returned to
the thread’s memory pool from which they were allocated, to
avoid imbalances between allocating and deallocating threads.
Thus, the creation and destruction of a task involves two
atomic operations (Nop = 2).

For each of the Ny inputs of a task that have to be satisfied,
one atomic operation has to be performed to increment the
counter of available input data (N;p = 1). If that data is
reused (i.e., if no new copy is created), two additional atomic
operation (Njc = 2) are required on the reference count of the
copy used to manage its lifetime, one while retaining the copy
and one while releasing it (certain optimizations are applied
if the current task is the final owner and the copy is either
released or ownership is moved to a single successor). If, on
the other hand, a new copy is created, i.e., because the data
has to be assumed to be mutated by two different tasks, then
memory is allocated, which we assume also involves at least
one atomic operation in the underlying system allocator.

Moreover, the hash table bucket has to be locked and
unlocked for each input, resulting in one atomic operation on
the atomic lock of the bucket (N;p = 1). For single-input
tasks, access to the hash table can be eliminated because the
a newly discovered task can be scheduled immediately.

Once a task becomes eligible for execution, it is pushed into
the LLP scheduler using one atomic operation and taken out
of the scheduler by a worker thread ready to execute the task
using another atomic operation (Ng = 2).

Overall, the number of required atomic operations N4 in
the lifetime of a task that works on existing data are

Na=(Nip+Nre+ Nip) X Ni+ Nep + Ng
=4x N;y+4
None of the atomic variables are contended, i.e., there may

be a few threads accessing these variables in close proximity
but at no point are all threads required to access them.

D

V. EVALUATION
A. Systems under Test

We conducted our experiments on two platforms: Summit,
an IBM system equipped with 22 core IBM Power9 dual-
socket nodes installed at Oak Ridge National Laboratory
(ORNL), and Hawk?, a Hewlett Packard Enterprise system
equipped with 64 core AMD EPYC Rome dual-socket nodes.
On Summit, all codes compiled by us were compiled using
GCC 11.1.0. On Hawk, we used GCC 10.2.0 and the Intel
compiler in version 2022.0.0. In all cases, -03 was used to
enable aggressive optimizations.

B. Minimum Task Latency

In order to determine the bare minimum task latency, we
measure the execution of 10 million tasks with data flow
or dependencies serializing their execution in TaskFlow [21],
OpenMP [22], and T7G. These tasks were executed by a single
thread, avoiding any cross-thread interference. The TaskFlow
implementation of the benchmark only supports control-flow
between tasks. In OpenMP, the benchmark uses N task depen-
dencies between two successive tasks. In order to prevent a
common optimization where OpenMP implementations inline
tasks when running with a single thread, we ran 2 threads,
blocking one in a sleep for a sufficiently long time to allow
the other thread to complete the execution of the benchmark.

In the 77G implementation, each task sends data on its IV
output terminals to the /N input terminals of its successor task.
Currently, 7TG does not merge data flows but instead inspects
each data flow individually. Thus, for two or more flows the
hash table described in Section III-C has to be queried to track
the task between the handling of the different flows.

We measured two variants of the 77G benchmark: one in
which the data is moved through the DAG and one in which
the data is copied. In both cases, the data is a single integer
value. While in the former case, no copies beyond the initial
ingress copy has to be created, the variant in which data is
copied between tasks requires creating a new copy between
each task, causing significant allocation overheads.

Figure 5a shows the task latency in all four implementations
on Hawk. For control-flow only (no actual data flowing

Lhttps://www.olcf.ornl.gov/olcf-resources/compute- systems/summit/
Zhttps://www.hlrs.de/systems/hpe-apollo-hawk/

1400
—4— OpenMP —-4- TTG (copy)
600 TaskFlow —4— TTG (move) "o 1200

—4— OpenMP -4 TTG (copy) »

TaskFlow —4— TTG (move)

1000

@
a
a

Task Latency [ns]
Task Latency [ns]

5 6 o 1 5 6

2 3 4
Number of Flows

(b) Summit.

2 3 4
Number of Flows

(a) Hawk.

Fig. 5: Task latency on Hawk for different number of flows in
TTG and number of dependencies in OpenMP, using a chain
of tasks. TaskFlow does not support multiple flows between
the two same tasks at the time of this writing.

between tasks), both TaskFlow and OpenMP show a latency
of over 200ns, while TTG shows a latency of 75 ns. Based on
Figure 1 and Equation 1, 25% are due to atomic operations.
For a single data flow, the latency of 77G increases to 100 ns
and eventually meets the latency of OpenMP at 4 flows
(300ns). The jump between 1 and 2 flows is due to the addition
of the hash table at 2 flows. The slope for OpenMP is smaller
than for 77G, leading to approximately 400ns for 77G and
310ns for OpenMP at 6 flows/dependencies. This is likely
due to the ability of OpenMP to inspect all dependencies
at once. While it would be possible to extend 77G in that
direction, the value of such an optimization would be small
in real-world applications where tasks commonly send data to
different successors.

A similar picture emerges on Summit (Figure 5b), where
TTG shows a minimum latency of 190 ns compared to 390 ns
for OpenMP and TaskFlow. However, beyond two flows/de-
pendencies, the gap between TTG and OpenMP grows larger,
which we attribute to the necessary atomic operations in 77G
and their relatively high cost on Power9 (cf. Figure 1). In
all cases, approximately 50% of the latency in 77G can be
attributed to atomic operations.

C. Task Scaling

In order to compare the LLP scheduler described in Sec-
tion IV-C against the LFQ scheduler, we use a benchmark
that traverses a binary tree of height N, passing a single
datum from the root to the leaves. Each non-leaf task discovers
two successor tasks and each task has exactly one input and
one output edge. Thanks to the single input, accessing the
hash table can be avoided because discovered tasks can be
scheduled directly for execution. Moreover, pure control flow
is used with a single integer as task ID, avoiding any data
life-time management. This puts significant pressure on the
scheduler to handle an influx of tasks from all threads.

A total of Zﬁ;o 2™ tasks is discovered during the execution.
We used NV = 22 for our benchmarks, resulting in the discov-
ery of approximately 4M tasks. In contrast to OpenMP [23],
[24], TTG currently does not throttle the discovery of tasks to
avoid the risk of starvation on other processes.

—X- LLP (1 Threads) —¥- LLP (16 Threads)
=¥ LLP (4 Threads) == LLP (32 Threads)
LLP (8 Threads) - LLP (64 Threads)

— LFQ(1Threads) —— LFQ (16 Threads)
—+ LFQ(4Threads) — LFQ (32 Threads)
LFQ(8Threads) —— LFQ (64 Threads)

100.0% 3

10.0% 1§

Overhead [%]

1.0% §

0.1%

40000 60000 80000 100000

Task Duration [cycles]

0 20000

(a) Relative overhead with different numbers of threads.

— LFQ (0 Cycles) e 3
4 —— LFQ (500 Cycles) 2
LFQ (10000 Cycles)

—— LFQ (100000 Cycles)

T % LLP (0 Cycles)

k- LLP (500 Cycles)

] LLP (10000 Cycles)
—- LLP (100000 Cycles)

@
o

w
o

Y
o

w
o

Speedup over 1 Threads
N
o

,,,,,,
==

=
o

o

Number of Threads

(b) Thread-scaling efficiency.

Fig. 6: Comparison of the LFQ and LLP scheduler under
pressure on Hawk.

We varied the amount of work each task performs by
blocking the execution of the task until a given number of
cycles has passed (using the rdtsc counter). Figure 6a shows
the relative overhead when using either the LFQ or LLP
scheduler with varying numbers of threads on Hawk. We
defined the overhead as 100 x i—;, where ¢, is the time with ¢
cycles spent in each task and ?y the time with an empty task.
The results indicate that the LLP scheduler by far outperforms
the LFQ scheduler, even for a single thread. While with the
LLP scheduler, even with 64 threads the overhead drops below
1% at about ¢ = 40k, only configurations with 1 or 4 threads
under LFQ reach below 1% overhead. The number of tasks
exceeds the size of the thread-local bounded task buffer with
LFQ, and the vast majority of tasks end up in the overflow
FIFO that is shared between threads. As a consequence, almost
all schedule operations cause contention on the lock protecting
the global FIFO, severely inhibiting scalability of LFQ.

Figure 6b shows the speedup under different task granular-
ities. The LLP scheduler achieves nearly perfect scaling with
increasing numbers of threads for tasks of size 10k and 100k
cycles and 90% efficiency for tasks of 1k cycles (0.5 ps). For
empty taks, the LLP scheduler still yields an efficiency of
over 50%. We attribute that drop in efficiency to contention in
the event of stealing due to imbalanced execution. The LFQ
scheduler, on the other hand, exhibits relatively poor scalability
for all but the largest task size.

While these results demonstrate that the the LLP scheduler
is capable of handling high pressure, we note that the numbers
provided here stem from an artificial benchmark in which a)

half of the tasks (the leafs) do not discover successor tasks and
b) the copy management is trivial. However, the LLP scheduler
shows promising results when scaling both the number of tasks
and threads.

D. Parameterized Task-Bench

In order to compare against other shared-memory and
distributed task libraries, we implemented the parameterized
Task-Bench benchmark [25] with T7G. Task-Bench provides
some core functionality that was used by various programming
model experts to implement a parameterized task benchmark
in their respective model. Implementations must support a
variable number of dependencies, which can be queries both
forward and backward and are provided by the framework.
The TTG used in our implementation and an unrolled graph
of the 1D stencil are provided in Figure 2.

The design of the benchmark and its internal API are geared
towards dependency-based models where a task’s inputs and
outputs are expressed in terms of points in a grid at task
instantiation. In contrast, tasks in 77G have no knowledge of
where input data originated from but must be aware of their
successor tasks. The variable number of inputs are supported
by backward-looking memory-based models such as OpenMP
by satisfying task input dependencies from any previously
discovered task with a matching output dependency, if any.
In a forward-looking model such as 77G, however, a task
ordinarily will have to know which successor task to send data
to and how many inputs that task expects in order to satisfy
the correct input. Some implementations in Task-Bench have
faced a similar challenge, e.g., PaRSEC PTG.

We thus provide a quick overview over the implementation
of Task-Bench in 77G and how we solved this challenge.

1) Implementation in TTG: While in real-world applica-
tions most tasks in 77G would expect a fixed number of
inputs, the problem of flexible inputs came up in real-world
applications before. The existing solution has been to use
streaming terminals that accumulate the required number of
elements into a custom data structure [13]. However, in this
approach the 7TG implementation loses track of data copies,
requiring the copying of data between tasks even if the inputs
are immutable and thus tasks could share the same copy.

We thus introduced a new abstraction called aggregator
terminals. These terminals are similar to streaming terminals
in that they allow for the accumulation of a certain number of
input data. However, the data remains under the management
of TTG, reducing the number of copies needed.

An example of how aggregators can be used to create the
Point template task in Task-Bench is provided in Listing 1.
The call to ttg::make_aggregator wraps an input edge
such that an aggregate of inputs will be passed to the task.
The number of inputs to be aggregated can be either a fixed
value or determined for each task separately, e.g., through
compute_num_inputs in Line 17.

In Task-Bench, the equivalent of compute_num_inputs
queries the number of inputs of each task. Since there is no
guaranteed order of the inputs in the aggregator, the task body

=l B R R R T S

Ve
* Create a template task that aggregates
* a number of elements from in_edge
* before executing.
*/
void make_point_tt (ttg::Edge<Key,
auto taskfn = [] (const Keyé& key
const ttg::Aggregator<data_t>& values) {
std::vector<data_t> sorted_inputs;
for (const data_t& value : values) {
sorted_insert (value, sorted_inputs);

data_t>& in_edge) {

1
execute_point (key, sorted_inputs);
broadcast_successors (key, values);
i
auto aggregator_count = [] (const Key& key) {
return compute_num_inputs (key);
i
// the aggregator edge calls the provided callback
// to determine the number of inputs for each task
auto aggregator_edge = ttg::make_aggregator(
in_edge,
aggregator_count) ;

return ttg::make_tt (fn, ttg::edges(aggregator_edge));

Listing 1: Skeleton implementation of Task-Bench using ag-
gregator terminals in 77G.

orders these inputs according to their origin (Line 11), based
on information about its origin stored in the data element.
Finally, the task has to query its successor tasks and broadcast
its output data (Line 14). In summary, each task has to query
its predecessors twice and its successors once. While this
benchmark induced overhead cannot be eliminated here, we
expect real-world applications to be more constrained and thus
require less effort when using aggregators.

2) Single Core Results: We compare the 77G implementa-
tion against Legion [26] (v22.03.0), pure MPI, MPI+OpenMP
work-sharing loops (only OpenMP worksharing loops if run-
ning in shared memory), OpenMP tasks (shared memory
only) as well as PaRSEC PTG [27]. All but the TTG im-
plementation were taken from the Task-Bench repository.’®
OpenMP tasks, PaRSEC PTG, Legion, and TTG all use a task-
based abstraction, while pure MPI and MPI+OpenMP work-
sharing loops do not explicitly define the concept of tasks
and are closer to fork-join parallelism or Bulk-Synchronous
Parallelism programming models. Although Legion, PaRSEC,
TTG, and MPI are capable of distributed memory runs, we will
focus solely on shared memory execution in this work. For
all measurements, we used the 1D stencil dependency pattern
(2+1 dependencies; Figure 2b) and the compute-bound kernel.

PaRSEC PTG has been found to be the most efficient truly
task-based implementation [25]. In the interest of clarity we
did not include all other Task-Bench contenders but refer
the interested reader to the original publication. We chose to
include MPI and OpenMP because they represent the lingua
franca of parallel programming. We set OMP_PLACES=cores
and OMP_PROC_BIND=spread for all OpenMP runs. Our
choice of Legion was based on our understanding that it is
developed by the same authors as Task-Bench.

3https://github.com/StanfordLegion/task- bench

—I- Legion
A- mpl
-3 | OpenMP Parallel For (GCC)
10 N D::MP P::II:I F: (Intel)
—_— \ OpenMP Tasks (GCC)
lﬂ e OpenMP Tasks (Intel)
% \. ¥~ PaRSEC PTG (uptimized)
1074 4 \\\N“_g T
=
O
o .
£ Iy '
s | >
g0 ==
o o
=3 =
o ™
o 10-6 4 L2
210 8 &
- 2o
1077 5 Ak
108 107 10% 10° 104 10% 102
Flops Per Task
(a) Average core time per task.
B
4 Wil U RRY Wi Sy (| - MPI
100 14 o ran VI OpenMP Parallel For (GCC)
OpenMP Parallel For (Intel)
OpenMP Tasks (GCC)
OpenMP Tasks (Intel)
801 —i— PaRSEC PTG (optimized)
PaRSEC PTG (orig)
§ TG
> 604
o
=
K
k]
E 40 4
201
0

108 107 10° 10° 104 10° 10%
Flops per task

(b) Efficiency under decreasing flops-per-task on Hawk.

Fig. 7: Task-Bench results on 1 core on Hawk.

Similarly to the original paper, we ran for 1000 timesteps
with one task per core per timestep, maximizing the competi-
tion of threads for tasks of varying sizes. For 77G, we enabled
thread-local termination detection and the LLP scheduler.

Figure 7 shows the results of the Task-Bench benchmark on
a single thread on Hawk. Figure 7a shows the average core
time (including all overheads) per task. It becomes clear that
the MPI-only variant achieves the lowest per-task execution
time, approximately 4x lower than OpenMP for loops and
TTG. While the numbers for 77G are significantly higher than
the 75ns observed in Section V-B it should be noted that the
skeleton around the task kernels required in the Task-Bench
implementation is significantly more complex and expensive,
as described earlier. 77G is followed by PaRSEC, with and
without the optimizations described in this paper, and by
the OpenMP task-based implementations. The optimizations
presented in this work have shown to benefit not only 77G
but also PaRSEC PTG.

Figure 7b shows the resulting efficiency of the differ-
ent implementations under decreasing task sizes, where the
baseline (100%) is the highest performance observed on a
single core. Using that information, we can determine the
minimum effective task granularity (METG) [25] for a given
efficiency number. For example, METG(50%) for pure MPI
is at approximately 6k flops per task while for 77G and
OpenMP work-sharing loops the same efficiency is achieved
for approximately 20-25k flops per task. We attribute the
superior performance of the pure MPI implementation to

10—1 E
w
2 1072 4
s
£107% 4
]]
IE —
1 —4 I
I s =
o A et 3
o OpenMP Parallel For (GCC) ”~\l S
—5 | OpenMP Parallel For (Intel) ., === -
3: 107% o::MPT:?ls (60:2(“) =S
OpenMPTasks (intel) Al
—i~ PaRSEC PTG (optimized) T~
10_5 J -I:-.r:-SEC PTG (orig) ‘--‘ ______ ‘_ _____ * Al
108 107 108 10% 104 10% 102
Flops Per Task
(a) Average core time per task.
1— Leglon
d - MPI
100 OpenMP Parallel For (GCC)
OpenMP Parallel For (Intel)
OpenMP Tasks (GCC)
OpenMP Tasks (Intel)
80 I —F— PaRSEC PTG (optimized)
s PaRSEC PTG (orig)
,§ TG
> 604
o
=
o Il
k]
E 40 \,
20 4
\\\\‘\
oA gl | [1T U DAl
108 107 10° 10° 10* 103 10?
Flops per task

(b) Efficiency under decreasing task size.

Fig. 8: Task-Bench results on 64 cores on Hawk.

the fact that there is no task handling overhead and the
lack of communication when running on a single core. This
matches the observations in the original publication. All other
implementations dispatch the execution of tasks to a runtime
library. It is interesting to note that both implementations of
OpenMP tasks yield a significantly higher METG(50%) above
100k flops per task.

3) Thread-Scaling Results: TFigure 8 provides the same
information for runs with 64 threads on Hawk. From Figure 8a
it can be seen that both 77G and the optimized PaRSEC
PTG are on-par with the variant using OpenMP worksharing
constructs under the Intel runtime, outperforming the same
variant compiled with GCC. The OpenMP variants using
tasks show significantly worse scalability. This is mirrored in
Figure 8b, where the efficiency is relative to the best single-
core performance multiplied by the number of threads. The
METG(50%) of TTG is at approximately 60k flops per task
while the value for the best OpenMP worksharing variant is
found at 1M flops.

Figure 9 provides a breakdown of the most important
changes in addition to LLP (discussed in Section V-C and less
relevant for small numbers of tasks), namely the thread-local
termination detection and the biased reader-writer lock. The
results underscore that it is important to thoroughly analyze all
parts of a runtime system in order to gain the best performance
and that any bottleneck will inevitably limit scalability.

We ran a similar set of benchmarks on Summit, albeit with
a reduced set of task granularities and variants. However, a

1072 4 N

1074 4

Avg Core Time Per Task [s]

105 4 % 7T (FounCaunter Termder)
=3~ TTG (Thread-Local Termdet & Biased RWLock)
TTG (Thread-Local Termdet)

108 107 106 10° 104 10° 102
Flops Per Task

Fig. 9: Breakdown of contributions of thread-local termination
detection and biased reader-writer lock on 64 threads on Hawk.

1072

—i— Leglon
- MPI
OpenMP Parallel For
OpenMP Tasks (GCC)
— 1073 —i— PaRSEC PTG
2 TG
¥ M ; £
o
= - .
o 107 4
a
]
£
=
' 1075 4
i
S
(9]
o
>
< 107° 5
1077

108 10° 104 10%
Flops Per Task

(a) Average core time per task.

i | L Y- —1— Leglor
100 1 dr——dr==fimf=——aL[R i Togn
ol ‘OpenMP Paraliel For
~~~~~ Rl OpenMP Tasks (GCC)
| PBRSEC PTG
80 1 s
£ 60
FO | A A N 1N B . NS
2
o
2 a0
&
20
o -

10° 105 104 10°
Flops per task

(b) Efficiency under decreasing task size.

Fig. 10: Task-Bench results on a single core on Summit.

similar picture emerges from Figure 10 for a single core:
MPI shows the lowest latency, followed by 7T7G, OpenMP
worksharing loops, the optimized PaRSEC, and the OpenMP
task-based variant. At 22 cores (Figure 11) the gap between
the three groups—MPI, T77G/PaRSEC/OpenMP worksharing,
and OpenMP tasks—widens further, suggesting significant
scalability challenges. The three implementations in the second
group still yield latencies around 20 pus.

E. Multi-Resolution Analysis: Thread-Scaling

The MRA benchmark computes the order-10 multi-
wavelet [14] representation of 3D Gaussian functions (ex-
ponent 30 000) to precision of 10~® with Gaussian centers



1072

— i 3
-3
7 10
%
K N
5 107 4 =iy
5 s
: S S s
2 A
[ Ta
10 S
§ L
o -+ Biiiinan ]
b4 PSRN | N 11 e .
< 10—5 4 uplm r =
OpenMP Paraliel For
OpenMP Tasks (GCC)
—i— PaRSEC PTG
TG
1077 r : : :
- 105 10% 103

Flops Per Task

Fig. 11: Task-Bench results on 22 cores on Summit.

=X TTG (optimized) (64)
=¥ ' TTG (optimized) (126)
=& TTG (optimized) (256)
—E- TTG (original) (54)
"""" - =%~ TTG (original) (128)
X - TTG (original) (256)

102 4

Time to solution [s]

10* 4

Number of Threads

Fig. 12: Time to solution of MRA with the original (solid lines)
and optimized (dotted lines) TTG over PaRSEC on Hawk with
different numbers of functions computed concurrently (64,
128, 256). Numbers on each point show the speedup compared
to the run with 1 thread.

distributed randomly in a [—6,6]> volume. The computation
comprises three steps: projection results in a 3D spatial data
structure; compression flows data up the tree; and recon-
struction flows data down the tree. Of those three steps, the
projection step is the most costly part, each computing a
GEMM on 20? double precision matrices.

Figure 12 shows the time to solution of MRA on Hawk
under both the original 77G and TTG with the optimization
presented in this work. Numbers above each point show the
speedup compared to the corresponding run with 1 Thread.
While the original 77G achieved close to a 5x speedup up to
32 threads, the optimized T7G achieves close to 20x speedup
at 48 threads for 256 functions. Although the results are far
from ideal when scaling beyond 8 threads, they do provide
a significant improvement over the original 77G implementa-
tion. We believe that additional improvements such as inlined
tasks to reduce the number of very short tasks will help yield
further improvements. However, these extensions of the TTG
API are beyond the scope of this paper, which focuses on
runtime system improvements.

VI. RELATED WORK

There exists a large body of literature on the topic of concur-
rent hash tables, and comparing with all existing approaches is

outside the scope of this work. We refer the reader to [28] for
a recent survey of concurrent hash table techniques. Spinlocks
are used to ensure the atomicity of buckets, and reader-
writer spinlocks using [29] and the BRAVO optimization [19]
ensure the atomicity of resizing. A popular alternative to
using reader-writer locks are lock-free hash tables [30], [31].
The focus of lock-free data structures is the avoidance of
starvation of threads in the event that a thread holding a lock
disappears or is blocked for significant time. Modification of
entries typically involves a sequence of atomic operations and
increased complexity. This typically does not apply to systems
like TTG and PaRSEC where any fault of a thread will lead
to termination of the application.

Other benchmarks specific to measuring the overhead of
OpenMP [32] and OpenMP tasks [33] have been proposed in
the past. Task-Bench [25] is an attempt to evaluate task-based
runtime systems independently of their programming API or
model. In it, the authors use Task-Bench to compare a variety
of task-based runtime systems: OmpSs [34], OpenMP 4.0[22],
two DSLs of PaRSEC [27], [35], Legion via both its Realm
abstraction [36], and Regent [37], and StarPU [38]. They
also compare implementations of Task-Bench over MPI, non-
task-based Open MP, and the PGAS languages Chapel [39],
Charm++ [40] and X10 [41]. In this work, we added TTG to
this large set, and we focus the comparison with the most per-
forming or the most popular runtime systems already evaluated
in [25]. Other approaches focus on small task granularities in
specific applications [42] and the trade-off of picking the right
task granularities has been extensively studied [2], [3], [4], [S].

VII. CONCLUSIONS

We have presented a detailed analysis of bottlenecks in 77G
and described how they have been eliminated. The results
demonstrate that T7TG is capable of handling control-flow
tasks in less than 100ns and in a 1D stencil benchmark is
able to outperform traditional OpenMP worksharing loops in
shared memory at high numbers of threads. We have also
demonstrated that the improvements made in this work can
substantially improve the performance and scalability of a
mini-app implemented in 77G. Overall, the results suggest that
careful optimization can lead to low task overheads that in turn
enable the use of short tasks without sacrificing performance.
The optimizations made here will also pave the way for future
GPU support in 77G to provide low-latency coordination and
efficient data flow between kernels executing on accelerators.

ACKNOWLEDGMENTS

This research was supported partly by NSF awards
#1450300, #1450344 and #1450262, and by the Exascale
Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. We gratefully acknowledge
the provision of computational resources by the High Per-
formance Computing Center (HLRS) at the University of
Stuttgart, Germany.



[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

S. Naffziger, N. Beck, T. Burd, K. Lepak, G. H. Loh, M. Subramony,
and S. White, “Pioneering Chiplet Technology and Design for the
AMD EPYC™ and Ryzen™ Processor Families : Industrial Product,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021.

S. Bora, B. Walker, and M. Fidler, “The tiny-tasks granularity
trade-off: Balancing overhead vs. performance in parallel systems,”
2022. [Online]. Available: https://arxiv.org/abs/2202.11464

A. Gerasoulis and T. Yang, “On the granularity and clustering of directed
acyclic task graphs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 4, no. 6, pp. 686-701, 1993.

S. Shudler, A. Calotoiu, T. Hoefler, and F. Wolf, “Isoefficiency in
practice: Configuring and understanding the performance of task-based
applications,” in Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP *17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
131-143. [Online]. Available: https://doi.org/10.1145/3018743.3018770
A. Navarro, S. Mateo, J. M. Perez, V. Beltran, and E. Ayguadé, “Adaptive
and architecture-independent task granularity for recursive applications,”
in Scaling OpenMP for Exascale Performance and Portability, B. R.
de Supinski, S. L. Olivier, C. Terboven, B. M. Chapman, and M. S.
Miiller, Eds. Cham: Springer International Publishing, 2017, pp. 169—
182.

Nvidia Inc., “CUDA C++ Programming Guide,” May 2022. [Online].
Available:  https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_
Guide.pdf

L. Zhang, M. Wahib, and S. Matsuoka, “Understanding the overheads
of launching CUDA kernels,” ICPP19, 2019.

H. Schweizer, M. Besta, and T. Hoefler, “Evaluating the cost of
atomic operations on modern architectures,” 2020. [Online]. Available:
https://arxiv.org/abs/2010.09852

P. Nookala, P. Dinda, K. C. Hale, K. Chard, and I. Raicu, “Enabling
extremely fine-grained parallelism via scalable concurrent queues on
modern many-core architectures,” in 2021 29th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS). 1EEE, 2021, pp. 1-8.

G. Bosilca, R. J. Harrison, T. Herault, M. M. Javanmard, P. Nookala,
and E. F. Valeev, “The Template Task Graph (TTG) - an emerging
practical dataflow programming paradigm for scientific simulation at
extreme scale,” in IEEE/ACM 5th Intl. Wksp. on Extreme Scale
Programming Models and Middleware (ESPM?2), Nov. 2020, pp. 1-7.
[Online]. Available: https://ieeexplore.ieee.org/document/9307054

G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. Don-
garra, “PaRSEC: A programming paradigm exploiting heterogeneity for
enhancing scalability,” Comp in Sc. and Eng., vol. 99, p. 1, 2013.

R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann,
J. Fosso-Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C.
Hill, J. Jia, J. S. Kottmann, M. Y. Ou, L. E. Ratcliff, M. G. Reuter,
A. C. Richie-Halford, N. A. Romero, H. Sekino, W. A. Shelton,
B. E. Sundahl, W. S. Thornton, E. E. Valeev, A. Viazquez-Mayagoitia,
N. Vence, and Y. Yokoi, “MADNESS: A multiresolution, adaptive
numerical environment for scientific simulation,” SIAM J. Sci. Comput.,
vol. 38, no. 5, 2016.

J. Schuchart, P. Nookala, M. M. Javanmard, T. Herault, E. F. Valeev,
G. Bosilca, and R. J. Harrison, “Generalized Flow-Graph Programming
Using Template Task-Graphs: Initial Implementation and Assessment,”
in 2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2022.

B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, “Adaptive solution
of partial differential equations in multiwavelet bases,” Journal of
Computational Physics, vol. 182, no. 1, 2002.

“perf: Linux profiling with performance counters,” accessed May 19,
2022. [Online]. Available: perf.wiki.kernel.org

G. Bosilca, A. Bouteiller, T. Herault, V. Le Fevre, Y. Robert, and
J. Dongarra, “Comparing distributed termination detection algorithms for
task-based runtime systems on HPC platforms,” International Journal
of Networking and Computing, vol. 12, no. 1, 2022.

P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen,
“X86-TSO: A Rigorous and Usable Programmer’s Model for X86
Multiprocessors,” Commun. ACM, vol. 53, no. 7, jul 2010.

R. Liu, H. Zhang, and H. Chen, “Scalable read-mostly synchronization
using passive reader-writer locks,” in Proceedings of the 2014 USENIX

(19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

Conference on USENIX Annual Technical Conference, ser. USENIX
ATC’14. USA: USENIX Association, 2014.

D. Dice and A. Kogan, “BRAVO—Biased locking for Reader-Writer
locks,” in 2019 USENIX Annual Technical Conference (USENIX ATC
19). Renton, WA: USENIX Association, Jul. 2019.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward, “Light
Reading: Optimizing Reader/Writer Locking for Read-Dominant Real-
Time Workloads,” in 33rd Euromicro Conference on Real-Time Systems
(ECRTS 2021), ser. Leibniz International Proceedings in Informatics
(LIPIcs), B. B. Brandenburg, Ed., vol. 196. Dagstuhl, Germany: Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2021.

T-W. Huang, D.-L. Lin, C-X. Lin, and Y. Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing Sys-
tem,” IEEE TPDS, 2021.

“OpenMP OpenMP Application Programming Interface, Version 5.2,”
Sep 2021. [Online]. Available: https://www.openmp.org/wp-content/
uploads/OpenMP- API-Specification-5-2.pdf

T. Gautier, C. Perez, and J. Richard, “On the Impact of OpenMP
Task Granularity,” in Evolving OpenMP for Evolving Architectures,
B. R. de Supinski, P. Valero-Lara, X. Martorell, S. Mateo Bellido, and
J. Labarta, Eds. Springer International Publishing, 2018.

A. Duran, J. Corbalan, and E. Ayguade, “An adaptive cut-off for task
parallelism,” in SC ’08: Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing, 2008.

E. Slaughter, W. Wu, Y. Fu, L. Brandenburg, N. Garcia, W. Kautz,
E. Marx, K. S. Morris, Q. Cao, G. Bosilca, S. Mirchandaney, W. Leek,
S. Treichlerk, P. McCormick, and A. Aiken, “Task Bench: A Parameter-
ized Benchmark for Evaluating Parallel Runtime Performance,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2020.

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Supercomputing,
2012.

A. Danalis, G. Bosilca, A. Bouteiller, T. Herault, and J. Dongarra,
“PTG: An abstraction for unhindered parallelism,” Proceedings of
WOLFHPC’14, 2014.

T. Maier, P. Sanders, and R. Dementiev, “Concurrent hash tables: Fast
and general (?)!” ACM Transactions on Parallel Computing (TOPC),
vol. 5, no. 4, 2019.

B. B. Brandenburg and J. H. Anderson, “Spin-Based Reader-Writer
Synchronization for Multiprocessor Real-Time Systems,” Real-Time
Syst., vol. 46, no. 1, 2010.

J. P. Nielsen and S. Karlsson, “A scalable lock-free hash table with
open addressing,” in Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP *16.
Association for Computing Machinery, 2016.

D. R. Martin and R. C. Davis, “A Scalable Non-Blocking Concurrent
Hash Table Implementation with Incremental Rehashing. Unpublished
manuscript,” 1997.

J. M. Bull, “Measuring synchronisation and scheduling overheads in
openmp,” in Proceedings of First European Workshop on OpenMP,
vol. 8, 1999.

J. Schuchart, M. Nachtmann, and J. Gracia, “Patterns for OpenMP Task
Data Dependency Overhead Measurements,” in Scaling OpenMP for
Exascale Performance and Portability, B. R. de Supinski, S. L. Olivier,
C. Terboven, B. M. Chapman, and M. S. Miiller, Eds. Springer
International Publishing, 2017.

A. Duran, R. Ferrer, E. Ayguade, R. M. Badia, and J. Labarta, “A
Proposal to Extend the OpenMP Tasking Model with Dependent Tasks,”
Intl. Journal of Parallel Programming, vol. 37, no. 3, 2009.

R. Hoque, T. Herault, G. Bosilca, and J. Dongarra, “Dynamic Task Dis-
covery in PaRSEC: A Data-flow Task-based Runtime,” in Proceedings
of ScalA’17, 2017.

S. Treichler, M. Bauer, and A. Aiken, “Realm: An event-based low-
level runtime for distributed memory architectures,” in Proceedings
of the 23rd International Conference on Parallel Architectures and
Compilation, ser. PACT "14. ACM, 2014.

E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken, “Regent: a
high-productivity programming language for HPC with logical regions,”
in SC ’I15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015.

C. Augonnet, S. Thibault, R. Namyst, and P. Wacrenier, “StarPU:
A unified platform for task scheduling on heterogeneous multicore
architectures,” Conc. Comp. Pract. Exper., vol. 23, 2011.



[39]

[40]

[41]

B. L. Chamberlain, “Chapel,” in Programming Models for Parallel
Computing, ser. MIT Press, P. Balaji, Ed., 2015.

L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in Proceedings of the Conference on
Object Oriented Programming Systems, Languages and Applications,
1993.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar, “X10: an object-oriented

[42]

approach to non-uniform cluster computing,” Acm Sigplan Notices,
vol. 40, no. 10, 2005.

D. Haensel, L. Morgenstern, A. Beckmann, I. Kabadshow, and
H. Dachsel, “Eventify: Event-Based Task Parallelism for Strong Scal-
ing,” in Proceedings of the Platform for Advanced Scientific Computing
Conference, ser. PASC ’20.  Association for Computing Machinery,
2020.



